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Abstract-Two dimensional natural convection problems governed by the continuity, momentum and 
energy balance equations and simplified through the Boussinesque approximation for buoyancy forces, 
are studied. By using a stream function the continuity equation is satisfied exactly and the remaining 
equations are expressed in terms of temperature and vorticity functions. A simple triangular finite element 
model is then developed and it is employed to analyse two examples, under varying conditions. For the 
cases where results (experimental and numerical) obtained by other authors are available a comparison 

is made. This comparison exhibits good agreement. 

NOMENCLATURE 

Ae, area of an element; 
d, significant length scale of the 

domain; 
g, gravitational constant; 
Gr, Grashof number, 

g~(Th- T~)d%~; 
h, average heat-transfer 

coefficient; 
i, j, unit vectors in x and y 

directions; 
k, thermal conductivity; 
l, cavity height; 
n, t, outward and tangential unit 

' vectors; 
Nu, Nusselt number hd/k; 
nx, ny, direction cosines; 
P, (p), dimensional (dimensionless) 

fluid pressure; 
Pr, Prandtl number, v/ct; 
Ra, Rayleigh number, 

gfl(Th- T~)d3/v~; 
T, local temperature; 
Th, T~, To, temperature of hot, cold walls of 

cavity and average temperature; 
u, v, (U, V), dimensional (dimensionless) 

velocity components in x, y 
direction; 

u,, ut, dimensionless velocity 
components in normal and 
tangential direction; 

x, y, (X, Y), dimensional (dimensionless) 
coordinates; 

[N(x, y)], row matrix for element 
interpolating function; 

{q}, {q} t, column matrix and its transpose 
for element nodal values; 

[K*], [g*] ,  [K~,], global system matrices for 
temperature, vorticity and 
stream functions; 

{q*}, ~ */ ~.*~ Iq,o/, (uOJ, 

{Q~}, {Q~*}, {Q~}, 

global vectors for temperature, 
vorticity and stream function 
nodal values; 
global load vectors for 
temperature, vorticity, and 
stream functions. 

Greek letters 
6, 

8, 
?, 

0, 

V, 

P, Po, 

(D, 

fluid thermal diffusivity; 
coefficient of thermal expansion; 
aspect ratio of rectangular 
cavity, I/d; 
dimensionless temperature, 
( T -  To)/(Th- To); 
fluid kinematic viscosity; 
fluid density, fluid density 
corresponding to average 
temperature; 
dimensionless stream function; 
dimensionless vorticity, 
(~V/~X-~U/~Y). 

INTRODUCTION 

NATURAL convection flows induced by buoyancy 
forces arise in many spheres of application. As examples 
of current interest we may cite the problem of heat 
effluent dispersion in estuaries and that of cooling 
fluids in channels surrounding a nuclear reactor core. 
Such flows have been the subject of experimental and 
theoretical investigations over the last two decades. A 
brief account of historical developments of the subject 
along with explanation of assumptions inherent in the 
governing equations of the problem are given by De 
Vahl Davis [1]. Essentially the governing equations 
are statements of conservation of mass, momentum 
and energy. To obtain a solution for these coupled 
non-linear equations, one must resort to a numerical 
method of solution. Amongst such methods the finite 
difference procedures have been most popular. These 
procedures are particularly convenient for rectangular 
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domains over which a uniform rectangular mesh can 
be used. 

In recent years notable progress has been made in 
the development of finite element procedures for flow 
problems [2, 3]. In these procedures the generation of 
discrete equations for a non-uniform mesh, over a 
domain with an irregular boundary is relatively easy 
and herein lies the main advantage of the finite element 
procedure over the finite difference approach. 

The aim of the present investigation is two fold. First 
a finite element model is developed for the solution of 
the two dimensional natural convection problems. 
Then by the way of illustrative examples some simple 
cases of different configuration are analysed and where 
results obtained by other procedures are available, a 
comparison is made. 

FORM[ LATION OF THE PROBLEM 

We consider the two-dimensional steady-state analy- 
sis of an incompressible fluid driven by buoyanc~ 
forces. It is assumed that these forces can be sufficiently 
accurately described by the Boussinesque approxi- 
mation. In this approximation the changes in densit\ 
are expressed directly in terms of changes in tempera- 
ture only and the resulting buoyancy forces are then 
introduced into the equilibrium equations in the form 
of body forces. However, the density changes arc 
ignored in the inertia terms of the equilibrium equation> 
and the continuity equation. It is further assumed that 
the dissipation due to ~iscous forces in the equilibrium 
equations, does not contribute significantly to the 
energy transport equation. 

Under these assumptions the conservation of mass, 
momentum and energy may be expressed as 

+?u & 
,gx+< = 0 tl) 

(;.V 

~u ~,u 1 ?p + g ( p - p o )  +vV+u u v - + t ,  <-=  - v . . . . . .  " (2) 
(X  C l' too ( 'x  Do 

&' &' 1 ?p 
u ~ + " ~ . . . . . . . . .  + vV% t3) 

( X ( r l h )  ~'~1" 

( T  , 'T  
u . + r . = 9:V2T (4) 

,(.V ¢ I 

where various symbols ha~e their conventional mean- 
ings and the subscript 0 denotes a reference temperature 
which we take as the mean of the hot and cold tem- 
peratures, see Fig. 1. Now the buoyancy force which 
acts in the direction ofx axis, may be expressed in terms 
of temperature changes through the Boussinesque 
approximation 

/3, thermal expansion coefficient 
dp 

- f i d T  
Po 

and hence 

P - Po 
- f l ( T -  To). (5) 

Po 

Substitution from equation 15) into equation (2) will 
close the system equations (2) 141 in terms of the four 
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F:~6. 1. The coordinate system. 

unknowns u, r, p and T. It is convenient to cast the 
system equations into non-dimensional form. To this 
end we introduce the following dimensionless variables. 

X = x/d, Y =  y/d, O-= 
L , -  T o  

U = ud/v, V = vd/v, P = pd"/pov z, 

To obtain approximate solutions for the [our system 
equations one may proceed in a number of different 
ways. Specifically in the case of finite element analysis, 
three methods have been developed, In the first the 
discretised equations are obtained directly in terms of 
{ . V, P and 0. This procedure has been employed by 
a number of authors for the analysis of viscous flow 
problems, i.e. only the momentum and the continuity 
equations are considered. As examples of this procedure 
we may cite the works of Hood and Taylor [3]. 
Kawahara et al. [3] and Oden and Welford [4]. More 
recently the same procedure has been employed for con- 
~ection problems by Kawahara et al. [5], Zienkiewicz 
et al. [6], and Gartling and Nickel [7]. A second 
alternative, which we follow, satisfies the continuity 
equation identically by introduction of the stream 
function 0, defined as 

~q, c0 
U = _ ~ - ,  V= -- : . ~6/ 

?Y 

Further, the pressure is eliminated from the momentum 
equations by appropriate differentiations and subtrac- 
tion. The introduction of the vorticity function cu. 
defined as 

(o = . . . . .  ( 7 )  
? X  F}" 

then allows one to describe the flow problem, in the 
absence of energy balance equation, in terms of the two 
~ariables ~ and w. This, the so-called vorticity-stream 
function formulation has also been employed by a 
number of authors for the solution of the two- 
dimensional momeritum and continuity equations. As 
examples we cite the works of Baker [ 8, 9], Cheng [ 10], 
Smith and Brebbia [11], Tong [12], and Bratanow et 

a/. [13]. 
A third alternative requires the elimination of the 

vorticity function through equations (6) and (7). This 
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procedure which leads to a fourth order equation in 
terms of~,, has been used by Olson [14] and Kawahara 
and Okamoto [15] for analysis of flow problems and 
by Young et al. for analysis of convection problems 
[16]. 

In regard to advantages of one formulation over an- 
other the following comments can be made. Evidently 
the number of variables in the last procedure, is least 
and this may be considered as an advantage for this 
formulation. However, the reduction in the number of 
variables is gained at the expense of admitting higher 
order derivatives in the system equation(s). The impli- 
cations of these higher derivatives is two fold. First, 
the continuity of the variable(s) from one element to 
the next, becomes stringent and difficult to meet [17]. 
Second, while the accuracy of computed values of ~k 
may be acceptable, those of the velocities will generally 
be inferior as a consequence of differentiations of an 
approximate field of ~,. These features of the stream 
function formulation make the use of high degree 
polynomials, as shape functions, mandatory [14]. The 
stream function-vorticity formulation also suffers from 
the loss of accuracy that results when the velocities are 
derived from the stream function. However, in this 
formulation the requirements of continuity of ~, and to 
from one element to the next do not present particular 
problems. 

The main drawback of the direct formulation for 
flow problems is the fact that the continuity equation 
is in effect, used as a constraint and is only approxi- 
mately satisfied. This raises the question of relative 
accuracy required for the momentum equations versus 
that of the continuity equation. Further the manner 
in which the continuity equation is incorporated into 
the discretised equations gives rise to some zero 
elements along the diagonals of one system matrix and 
prevents one from using some standard solver routines. 

On balance, the vorticity-stream function formu- 
lation appears to us to be the most suitable for the 
problem at hand and hence its adoption here. 

It can be readily shown that in terms of the non- 
dimensional variables the energy balance, and the 
momentum equations appear as 

- - -  V20 (8) 
? Y  ? X  CX OY Pr 

C~k Co9 Ctp 0o9 Gr dO 
+ V2o9 (9) 

CY~X CXCY 2 c~Y 

FIG. 2. Domain and boundary variables. 
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where Gr = g[3(Th-T~)d3/v 2 is the Grashof number 
and Pr = vice, the Prandtl number. 

Further, from equations (6) and (7) we have 

V2g, = - o 9 .  (10) 

Equations (8)-(10) constitute the governing equations 
of the problem. 

Next consider the associated boundary conditions. 
For generality consider a curved boundary with an 
outward normal vector n(=inx+jny) as shown in 
Fig. 2. Then for the temperature boundary conditions 
we have; either 0 is prescribed or 

d0 
- -  = 0. (11) 
~n 

For the velocity boundary conditions we first trans- 
form the velocities U and V to the boundary velocities 
U, and Ut as shown in Fig. 2. Thus 

U. = nxU + n r V  (12) 

U~ = - n y U  +nxV. (13) 

Now for confined flows U, and Ut must vanish. This 
implies that along a solid boundary 

e~- = 0 ~ n  = O. (14) 

Also from the definition of the stream function it is 
evident that the value of ~b is arbitrary to within a 
constant. As such ~ can be equated to zero at least 
at one point of a simply connected domain. If this point 
is taken on a solid boundary then from the first of 
equation (14) it follows that ~ must be zero along the 
entire length of the solid boundary. 

Equations ( l l )  and (14) constitute the essential 
boundary conditions of the problem. However, solu- 
tion of equation (9) requires appropriate boundary 
conditions for the vorticity co. These boundary condi- 
tions can be deduced from equation (8). Thus using 
the axes (n, t) on the boundary and recalling that ~b = 0 
along a solid wall, we have in this case; 

~zq, 
o9 - c3n-' " (15) 

SOLUTION STRATEGY AND FINITE 
ELEMENT EQUATIONS 

System equations (8)-(10) form a set of quasilinear 
elliptic equations. As such the solutions for ~k, o9 and 0 
will be continuous in the domain. The equations may 
be solved in the following iterative procedure. 

Initially the stream function is assumed as zero every- 
where and equation (9) is then solved as a linear 
equation for 0. This solution describes the temperature 
distribution for the pure conduction case. This tem- 
perature distribution and the associated stream func- 
tion field are then substituted into equation (9) from 
which a distribution for vorticity is obtained. Finally 
the obtained vorticity distribution is used in equation 
(10) and an improved distribution for ~ is determined. 
The cycle of iteration is then repeated until the values 
ofo9 for two consecutive calculations are within certain 
prescribed limits. 
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TO develop the discrete system equations consider a 
triangular element over which we approximate the 
stream function, temperature and vorticity by poly- 
nomials in X and Y. Since the three differential 
equations are of equal order, there is no need to use 
polynomials of different degrees for the three un- 
knowns. 

To outline the method of discretisation of differential 
equations (8)-(10) we represent all three in the following 
form 

~20 + ~ + S ( X ,  Y) = 0 (16) 
{~X 2 

where qb represents the stream function, temperature 
and vorticity in turn but S(X, Y) takes different forms 
in each case. If we consider S(X, Y) to be a prescribed 
function in each case, then equation (16) will be the 
Euler-Lagrange equation of the following functional 

l = f  1 '74~ 2_}_ 'UO 2 y)OIdA" 

The bar over the function S indicates that this function 
is prescribed and does not participate in the process 
of variation. It is a simple matter to show that 
extremisation of I yields equation (16) as well as the 
following associated boundary condition 

~- 60 = 0. (is) 
8n 

Equation (18) admits two types of boundary conditions 
the so-called essential and natural types. For equa- 

tion I18) to be satisfied either 0 must be prescribed 
or 80/8n must vanish naturally through the process of 
extremisation. When 0 stands for temperature the first 
type of boundary condition refers to a given tempera- 
ture distribution along a boundary while the second 
type describes an insulated boundary across which heat 
flux must vanish. When ~ stands for the stream func- 
tion the appropriate boundary condition, on a solid 
wall, is of the essential type and as mentioned earlier 
the value of ~ is prescribed as zero along the bound- 
ary. Hence 

. . . .  U , = 0 .  (19) 
8t 

It is worth noting that the no-slip boundary condition 
namely U, = 0, is not imposed by prescribing O along 
the boundary. We shall see shortly how this boundary 
condition is imposed. 

When 4~ stands for vorticity, again the required 
boundary condition for a solid wall is of the essential 
type. Thus we prescribe the vorticity along the bound- 
ary. The required value, as 'mentioned earlier, is 
obtained from the calculated values of 0 via equation 
(15). To this end we expand q, in a Taylor series, at 
the solid wall, and obtain 

+~,,, ~-~- Oi = O~ 8~0 (An)+½ ~n 2 w(An)2 + . . .  (20) 

where g,~ is the value of the stream function a small 
distance (An) along the normal and inside the domain 
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and the subscript w stands for wall. Now we let 
c9~/8n/,. = 0 and thereby we impose the no-slip boun- 
dary condition. Further, since ~ , -  0 we have from 
equations (15) and (20) the following approximation 
for the prescribed value of o) along the boundary 

, o  : -- i A , ~ l  i i 2  ~, 

Now returning to equation (17) we note that, for the 
functional I to be integrable, q) must be continuous 
everywhere in the domain. Hence in the finite element 
discretisation the competing functions must be con- 
tinuous within and across elemental boundaries. The 
simplest way of satisfying this requirement is to use 
linear interpolation (or shape) funclions over an 
element. Thus we let 

4(X, ~:) = [NIX. Y)] :q: ~22.i 

where [N(,~¢, Y)] is a 1 × 3 row matrix of interpolation 
functions and {q} denotes the value of q') at 3 vertices 
of a triangular element. The details of derivation of 
IN(X, Y)] can be found in any text on the finite element 
method, e.g. Zienkiewicz [17]. Substituting from equa- 
tion (22) into equation (17) we obtain the following 
discrete form of I 

- .~(x. YiixJ{q', i d a  (23~ 

where the integration is over each element and the 
summation is over the number of elements. In our case 
since the interpolation functions are simple in nature 
and the elements are straight sided, the integration in 
equation (23) can be carried out in close form. In an~ 
event the result of integrations in equation (23) will 
yield discrete equations of the following form 

l =  ~ ~t ~,r,~ 1~ ~ ' / i 2~q~ tktX,.~,q, " IQ,.~ t24) 

where the elemental matrices [K,. I and ',Q,,[ are ob- 
tained from 

and 

, d , t  

J 

125) 

d. 4¢ 

Finally, all the elemental nodal variables {q'j are related 
to a set of independent global nodal variables lq*'~ 
and thereby the continuity requirement for 4~, from one 
element to the next, is imposed. The functional I may 
then be expressed in terms of the global matrices as 

l=½{q*~j'[K*]~q *~, ~q*~'~Q*', (271 

where the global matrices [K*] and ~ Q* } are obtained 
from those of the elements (see [17]). Extremisation 
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Table 1. Summary of the test runs for example 1 

Run 7 Pr Gr Nu 

l I 0.733 103 1.073 
2 l 0.733 5 X 1 0  3 1.653 
3 l 0.733 104 2.108 
4 1 0.733 2 x 104 2.695 
5 3 0.733 2 x 104 2.568 
6 0.5 0.733 2 x 104 1.630 
7 0.2 0.733 2 x 104 1.07 
8 0.2 6.983 2 x 104 1.14 
9 0.2 6.983 2 x 104 1.59 

(Uniform mesh size) 
(Uniform mesh size) 
(Uniform mesh size) 
(Uniform mesh size) 
(Uniform mesh size) 
(Uniform mesh size) 
(Non-uniform mesh size) 
(Uniform mesh size) 
(Non-uniform mesh size) 
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Table 2. A comparison with previous results for example 1 

Aspect ratio 
Authors ? Ra Nu 

Present 1 1.47 × 104 2.695 
Catton et al. 1 1.47 × 104 2.71 
Cormack et al. 1 1.47 × 104 2.64 
Wilkes et al. 1 1.47 x 104 2.874 
Wilkes et al. 1 1.47 × 104 2.516 
Ozoe et al. 1 1.47 x 104 2.75 

Present 3 1.47 × 104 2.568 
Wilkes et al. 3 1.47 x 104 2.825 
Ozoe et al. 3 1.47 x 104 2.71 
Present 0.2 1.47 x 104 1.07 
Catton et al. 0.2 1.47 x 104 1.05 

Present 0.2 1.4 x 105 1.14 
Present 0.2 1.4 x 105 1.59 
Carton et al. 0.2 1.4 x 105 1.17 

Galerkin method 
21 × 21 F.D. 
11 × l l  F.D. 
21 × 21 F.D. 

l l  × 11 F.D. 

Galerkin method 
Uniform mesh size 
Non-uniform mesh size 
Galerkin method 

of I with respect to {q*} yields the discrete equations 
for the system as 

{K*] {q*} = {O*}. (28) 

In the present formulation we have three sets of dis- 
crete equations associated with equations (8)-(10). 

[K*] {q*} = {Q*(~)} (29) 

[K*] {q*,} = {Q*(0, 0)} (30) 

[K~] {q$} = {Q$(~o)}. (31) 

These equations are coupled, in a non-linear manner, 
through the RHS column vectors as indicated. A com- 
parison with equations (8)-(10) also reveals that the 
parameter Pr enters the calculation via [K~'] while 
Gr is accounted for in {Q*}. The algebraic equations 
(29)-(31) are then solved in an iterative scheme as 
described earlier. 

ILLUSTRATIVE EXAMPLES 

The element developed here has been used to analyse 
a number of examples. For  the sake of economy in 
space we report the results of two examples here. In 
[18], other examples, with extensive details of results, 
are described. 

In the first example a rectangular cavity is considered. 
The non-dimensional temperature 0, is taken as - 1  
along the wall y = 0 and + 1 along the opposite wall. 
The remaining two walls are considered as insulated 
(see Fig. 1). Nine different cases for some variations of 

aspect ratio 7, Grashofnumber  Gr and Prandtl  number 
Pr, have been analysed and the results are shown in 
Table 1. In all cases 200 triangular elements resulting 
in 121 nodes, were used in the computations. In most 
cases a uniform mesh was adopted but in two cases 
non uniform meshes were tested. For obtaining the 
boundary values of ~o from equation (21) the values 
of ff at the nodes closest to the boundary were used 
and (A,) was computed for such nodes. The average 
value of Nusselt number Nu,  given in Table 1, was 
calculated from 

1 ("~ a0 
N u  = ~ J o / ~  dX, ? = aspect ratio. 

The case of the rectangular cavity with differentially 
heated walls has been analysed by other authors using 
other numerical procedures. Some of the published 
results are given in Table 2 along with corresponding 
results obtained by the present finite element formu- 
lation. The parameter Ra, appearing in Table 2, is the 
Rayleigh number given by the product of Gr and Pr. 

According to the work of Catton et al. [19] the 
maximum value of Nu,  at a given value of Rayleigh's 
number, occurs at aspect ratio ? = 1. This feature is 
borne out by the results given in Table 2. For  this 
particular value of aspect ratio the results of present 
formulation are generally in good agreement with those 
obtained by other authors. However, at aspect ratio 
? = 3 the finite element results appear lower than those 
reported by Wilkes et at. [20] and Ozoe et al. [21]. 



0.5 

1.0 

F l o .  6. E l e m e n t  d i s c r e l i s a t i o n  o f  q u a d r a n t  o f  c ircu lar  reg ion .  

OD 

0 5  

X 

,o[ 
OO 

B. TABARROK and  RAN C. L]N  

Yo~ 

" / !1 ~i 

! . . . . . .  ~ 0  i li II, '~'~ 

" "' ,, i j / "  / i '̧  
,\ ~ j /  / 

: 1 F: t . . . . . ;  Ci F l[ l i'q ~ E F : ;~r Ii 

[,l(;. 3. l s o - s t r e a m  l ines for 1' : 1 a n d  P r  = 0 . 7 3 3 ,  

113 

0.5 Y 

O0 

I L 

i( 

• \ 

" , \075  

- W-" - - ~ - - ~ 0 , 5 0  ,, 

0 2 5  ' 

0 " 

.... _ _ _  - 0 . 5 0  

, ,  i t 
\ ;J I i ! !  

F I o .  4. I s o - t h e r m a l s  for ;, = 1 a n d  Pr = 0,733.  

LO 

/ . ......... Q, "--.):,\  

X } / f \. ",.'" \ \  

0.0 ~ - - ~ - -  j 
Y 

GRASHOF NUMBER "IO,OOO 

t:' l(;. 7. l s o - s t r e a m  l ines f o r  P r  :~ 7.00. 

1,0 

I.C 
H H 4 H i 3 e  RI~f'!UEM =r"l.I, H Hi 

F~o.  5, I s o - v o r t i c i t y  l ines for 7 = 1 and  Pr = 0.733.  

tD - , o  
% 

- 0.65 ~-.. j 

0 . 0  
-tO 

Y 
GRASHOF NUMBER = IO,OOO 

F'Ic,, 8. l s o - l h e r m a t  l ines for Pr = 7.00, 

1.0 



Finite element analysis of free convection flows 

However, Ozoe and his co-workers found that generally 
their experimental results were lower than their theor- 
etically predicted values. Unfortunately no comparable 6. 
experimental results were given for aspect ratio 7 = 3, 
in [,21]. Nevertheless it is expected that the present 
finite element results are more accurate than those 
quoted in [20, 21]. As to the case of aspect ratio 

7. 7 = 0.2, the present results are again in good agree- 
ment with those obtained by other authors. 

In Figs. 3-5 computer plots of iso-streamlines, iso- 
thermal lines and iso-vorticity lines are depicted for the 8. 
case of aspect ratio 7 = 1 and Grashof number 20000. 
Comparison of these plots with the corresponding ones  9. 
given in [-20], shows good agreement. 

As a second example a semi-circular cavity was con- 
sidered. On the curved boundary it was assumed that 

10. 0 = + 1 while on the straight boundary 0 was pre- 
scribed equal to - 1 .  Due to the symmetry of the 
domain and its boundary conditions, only half the 11. 
semi-circular cavity was analysed. Figure 6 shows the 
element discretisation of the domain while Figs. 7 and 
8 depict computer  plots for iso-stream and iso-thermal 12. 
lines for the case o f P r  = 7.00 and Gr = 10 000. 

CONCLUSIONS 

A simple finite element model has been developed 13. 
for the steady state analysis of free convection problems. 
Results have been computed for several examples with 
varying aspect ratios, boundary conditions and 

14. 
Rayleigh numbers. Where there exist corresponding 
results obtained experimentally or by other numerical 
or analytical methods, a comparison is made. In general 
very good agreement has been found in this com- 
parison. 15. 
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ANALYSE PAR ELEMENTS FINIS DES ECOULEMENTS DE 
CONVECTION NATU RELLE 

R~sum6--On 6tudie les problSmes de convection naturelle bidimensionnelle, gouvern6s par les 6quations 
de continuit6, de quantit6 de mouvement et d'6nergie et simplifi6s par l'approximation de Boussinesq 
pour les forces d'Archim6de. Par l'utilisation d'une fonction de courant, l'6quation de continuit6 est 
satisfaite exactement et les 6quations restantes sont exprim6es en termes de fonctions de temp6rature et 
de vorticit6. On d6veloppe un modSle simple h 616ment fini triangulaire et on l'utilise pour analyser deux 
exemples sous des conditions vari6es. On fait une comparaison avec les r6sultats (exp6rimentaux et 

numSriques) obtenus par d'autres auteurs. Cette comparaison montre un bon accord. 



952 B. TABARROK a n d  RAN C. LIN 

DIE U N T E R S U C H U N G  FREIER K O N V E K T I O N S S T R O M U N G E N  MIT 
HILFE FINITER E L E M E N T E  

Zusammenfassung-- Die durch Kontinuit~its-, Impuls-  und Energiegleichung bestimrnte zweidimensionale 
freie Konvektion wird untersucht,  wobei die Boussinesque-N~iherung f'tir die Auftriebskr~ifte angesetzt 
wurde. Die Kontinuit~itsgleichung wird mit Hilfe einer Stromfunktion exakt gelt)st; die verbleibenden 
Gleichungen werden mit Temperatur-  und Wirbelfunktionen ausgedrfickt. Es wird ein einfaches Modell 
mit dreieckigen finiten Elementen entwickelt und auf zwei Beispiele unter variablen Bedingungen 
angewandt. FiJr die F~ille, f'tir die experimentelle oder numerische Ergebnisse anderer Autoren vorliegen, 

wird ein Verg|eich durchgef'tihrt, wobei sich eine gute !2bereinst immung ergibt. 

AHAJ lF i3  C B O B O , ~ H O K O H B E K T I d B H b l X  TEqEHIdlTI M E T O J I O M  K O H E q H b l X  
D3-1EMEHTOB 

A m ~ o 3 r a ~ -  Idcc3]e~lyro'rca ~ayMepnb~e 3a~lanH no CBO60~IHO~ KOHBeKI.I.Itl, I, Olll'lCblBaeMbte ypaa-  
HeHIt~IMH Hepa3pblBnOCTH, KOJ]HtleCTBa 21BrlXeHl'l~l H 3nepFl, ix, KOTOpble ynpomenb~ 6 n a r o ~ a p a  
BBegleHl, IIO rlpl,16glI, DKeltl, l~l ByccnnecKa gl-qa nO21"l,eMltblX CI, IJ1. B pe3y.rlbTaTe l,lCrlO.rlb3OBaHlt~l qbyHKlllell, l 
TOKa ypaaaeHHe Bepa3pblaHOCTH y/1Oa.qeTaOpfleTCn TOtlHO, a OCTaatu~lecs ypaaHeHrUl Bblpa~KalOTCa 
• lepe3 ~yHKIII-II4 TeMnepaTypb~ n 3aBHXpeHHOCTI,I. ~aJlee, pa3pa60TaHa n p o c r a a  KoHe'~HOaY~eMeHTHan 
MO,Re.rlb Tpeyro.rlbHOFO Trlna, c HOMOII~bIO KOTOpO~ aHaaH31tpy~oTc~/1aa npltMepa npri 1'13MeI-IR1OIIII4X- 
C~ ycJ1OBrlflX. FIo.qyqeHHble pe3yJlbTaTbl xopottlO cor.rlacyloTot C rlMelOllllelMltC~l 3Kcnepl, lMeltTa31h- 

H bl M [.'1 ]laHHblMH. 


